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It is obvious that condition (7) is fulfilled for a suitable choice of arbitrary constants and, 
consequently, in the case being considered there also exists a family of periodic solutions 
(but with a lesser number of arbitrary constants). 

We note that in the limit as R -+ ~10 we arrive at the classical problem of the mo- 
tion of a rigid body in a homogeneous gravity field, for which periodic solutions are ob- 
tained in the first two cases for sufficiently small A - B, xc, y,, z, As a more detailed 

investigation shows, the last two cases lead to periodic solutions inherent only for the 

de Brun field and the central Newtonian field. 
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Precession equations are widely applied in gyroscopic systems. The conditions, 
under whose fulfillment the application of these equations is in a certain sense 
legitimate, have been established for linear autonomous systems and for certain 

special cases of nonlinear systems [l - 31. We give below the proof of precession 
theory for a wide class of nonlinear and nonautonomous systems. 

We consider a system under the action of gyroscopic forces depending on a large posi- 
tive parameter H, resistance forces with total dissipation, and other generalized forces 
& (q, t) depending on the coordinates 9 and on time f. Among the generalized for- 
ces Qk (q, t) there can occur potential, position-nonconservative (radial-correction), 
and other forces depending on the coordinates, perturbing forces depending explicitly on 
time, inertia forces, etc. 

We shall write the equations of motion in the following form [ 1, 21: 



Admisslbillty of application of precession equations of gyroscopic systems 205 

d aTz aT. 
--- 
dt aqsk i = Qk (q5 t, - i Cbkj + Hgkj) Yj’ 

aq,; 
(k = 1, . ., S) (1) 

j=1 

Here T, is a positive-definite quadratic form in the generalized velocities (I’. We as- 

sume that the inretia coefficients u kj = ajk, the coefficients bkj = bj k of the dissi- 

pative forces, and the gyroscopic coefficients g k j = -gjk , are continuous functions 

of coordinates q and of time t. Many problems on the motion of nonlinear gyroscopic 
devices on a moving base are reduced to equations of form (1). 

By substituting the value of T2 into (1) we obtain the equivalent vector-matrix equa- 

tion 
$ Aq’ = + $$ q’ . q’ + Q - (B + HG) q’ (2) 

A = /I akj II, B = II bkj IIT G = II gtj I 

Q = (Ql, . . ., Q,), q = (91, . . -9 4 

Here, by the first term on the right-hand side we mean a vector whose projections are 
determined by the equalities 

-+$l*.q.)k = -+*.q* 

In the Hamiltonvariables q, p = Arl’ Eq. (2) is equivalent to two first-order equations 
(p = H-r is a small parameter) 

q’ = A-lp (3) 

. 1 
VP =-yP aq 

= Pp. A-‘p + pQ - @B + G) A-p 

These equations are a particular case of the following singularly-perturbed system : 

9’ = f (9, P, t, P), 

whose truncated equations have the form: 

u’ = f (u, v, t, l-t)? 

(in the truncated equations the vectors u, 

VP’ = F (97 P, 6 p) 

F(u, v, t, p)= 0 

v correspond to the vectors q, p) . 

(4) 

(5) 

For the case when the right-hand sides of Eqs. (4) do not depend on the small para- 
meter n, Tikhonov [4] proved a theorem according to which the solution ‘I (t, CL), P’ (t, 

p) of the full Eqs. (4) tends, when a number of conditions are fulfilled, as p - u to the 
solution u (Q, v (tj of the truncated system (5). Wasow [S] noted that all the results are 
applicable also to the case when the right-hand sides of Eqs. (4) depend on the small 
parameter 1~ in a sufficiently regular manner. But it is necessary to consider that this 
remark is valid when the following additional conditions, following directly from the 
proof of Tikhonov theorem, are fulfilled: (1) the function F (q, p, t, p) must be of zero 
order relative to parameter u; (2) the equation F (9, p, t, u) L- 0 must have an iso- 
lated root p = cp (q, t, p) when u = 0. 

We return to Eqs. (3). It is obvious that the first additional condition is fulfilled, 
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while the second requires that the matrix G made up from the gyroscopic coefficients 
be nonsingular (hence it follows, in particular, that the number of coordinates should be 
even). Let us show that under the assumptions made and when det. G # 0, all the hy- 

potheses of Tikhonov theorem are satisfied. 
We set up the boundary layer equation 

Here (I and f are fixed, while the independent variable is z. We equate the right- 
hand side of Eq, (6) to zero and we present the equality obtained in the following form: 

@ $ G) .C1p = pQ -t + p $ A-‘p. it-‘p (7) 

We seek the solution of this equation by the method of successive approximations. As 
the zero approximation we take PO = ‘pO 1 0. We substitute this value into the right- 
hand side of equality (7) and we find the first approximation 

p1 = cpl -= 11 [(pR $ G) A-l]-’ Q 

(in [2] it was proved that under total dissipation the matrix within the brackets is non- 

singular). It is obvious that the second approximation pz = ‘pz differes from ‘pI by a 
term containing p3. Therefore, for a sufficiently small ;1 the singular point cp of the 

boundary layer equation (6) is determined by the equality 

cp ((I, t, 11) = p l(pR -i- G) A-‘]-’ Q + 0 (p”) (8) 

Let us investigate the stability of the singular point of the boundary layer for fixed ~1 

and t. To do this we set p := 9 -{- z, we replace p by this expression in Eq. (6), and 
we take into account that (0 is a root of the right-hand side, We then obtain 

(9) 

For fixed (1 and t the coefficients of z should be treated as constant matrices. The 

singular point is of the order I_L ; therefore, for a sufficiently small value of p the first- 

approximation equation takes the form 

n $ + (pB + G) s I 0 (:l-12 = x) 

In p] it was shown that all roots of the corresponding characteristic equation have nega- 
tive real parts (under the assumption that matrices A and B are positive definite). On 
the basis of Liapunov stability theorem, from the first-approximation equations we con- 
clude that for sufficiently small values of 1 z 1 the trivial solution z = 0 of the non- 
linear equation (9), and, together with it, the singular point p = cp(q, t, 11) of the bound- 
ary layer equation (6) with fixed q and t is asymptotically stable. From this it follows 
that Tikhonov theorem is applicable and the solution of the full Eqs. (3) is determined 

sufficiently accurately by the solution of the truncated system 
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On the basis of equality (3) the first term in the second equation can be discarded, as a 
result of which the truncated system takes the form 

u* = A-%, pQ - (p.B + 6) A-‘v = 0 

or, if we once again pass to the Lagrange’s variables and replace /_& by H-l , 

(B + IIG)u' = Q(q t) (101 

which is a vector-matrix form of the precession equations (they are obtained from Eqs, 
(1) when Ts = 0). Thus, we have proved the following theorem. 

Theorem. Ifon a material system there act gyroseopic forces depending on a large 
parameter &, resistance forces with total dissipation, and other generalized forces 

QR (q, t), then under the condition that the determinant of the matrix G (qt E) com- 
posed of the gyruseopic coefficients is nonzero, the solution of the full nonlinear and 
nonautonomous differential equations fl) coincides sufficiently accurate with the solution 

of the precession equations. (Of course, it is assumed that the initial values of the vector 
PO = A (‘lo, TV) (lo* take part in the influence of the root p = cp (q, 5, EL) of the 

boundary layer equation (7)). 
This theorem can be given a simple geometric interpretation. The precession equa- 

tion (10) is equivalent to the following two equations: 

u= ZIz \- 7 (/-la -i- G) v = Q (u, t) 

In the 2,~ dimensional phase space (u = y; v = ~1’) = (ql, . . ., q9; q<,. . . , qs’) 

the second equation defines an integral curve y (the curve y for nonautonomous systems 

deforms and shifts around in the space with time r’ ) along which the image point fl (fr, 
t-j of the precession equations moves, When the theorem% hypotheses are satisfied the 

image point 31 (~1, q’) of the full equations of motion (1) rapidly approaches the curve 
y and then moves aiong it, 

We note that at the expense of decreasing the parameter p the difference 4 (t, it) - 
II (t, p) can be made as small as desired not for all t > 0 but only in a certain inter- 

val (0, 7’). If we neglect the difference in the velocities of the motion of the image 
points i?f and AV along curve Y+ then we can consider that the solution 11 (t , r_t) of 
the precession equations is acceptable for all t > 0. The theorem proved on the accep- 

tability of the solutions of precession equations for nonlinear and nonautonomous systems 

requires the presence of resistance with total dissipation, Therefore, it cannot replace 
the analogous theorems proved in [1, 2 J for linear autonomous systems not containing 
resistance forces, 

Let us show what the violation of the condition det C f o leads tu when all other con- 
ditions are fulfilled. Let the full system of equations be 

rA’. -j- IYix’ -+ liKlfl” + Hg,y’ = 0 (11) 

fi.’ f lip* - H&c&’ f Hg,y’ = 0 
. . 

Y + ky’ - Hg,xx’ - fig&* = f_b 

On the system act the resistance forces - /~a’, - Jr@‘, - liy’ with total dissipation and 
gyroscopic forces with the matrix 

/1 

0 

c -: -- fll 
-- g.?, - g:r 
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The precession equations (u, c, ZL’ correspond to a, b, y) are 

ku’ + Hg,v’ + Hg,w’ = 0, 

kv’ - Hg,u’ + Hg3w’ = 0, 

ku?’ - Hg,u’ - Hg,v’ == 0 

and for k # 0 and p = H-l # 0 have the unique solution 

(12) 

16 = a,, 2, = fJo, w = y. (13) 

If we divide Eqs. (11) by H, introduce the small parameter p_ = H-l, integrate them, 
and retain only the principal terms in the general solution, then we have 

a = co + g&, B = PO - .@, Y = YO i- glE 

where 
E= g3~'-gaPo'+glTo' 

k(g13 + gas + g3y (1 - e-9 

This solution differs from solution (13) by terms nondepending on the small parameter 
p = H-* ; therefore, the passage from the full equations (11) to the precession equations 

(12) is inadmissible (in the example given det G = 0). 
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The description of invariants generated in systems of ordinary equations by home- 
omorphisms of a neighborhood of a singular point is connected both with stability 
problems [l, 21 as well as with the broader problems of the topological, analyti- 
cal (or formal) classification of such systems [ 3, 41. If the eigenvalues of the 
system’s linear part are related by only one resonance relation, a reduction to 
normal form [S] enables us to extend the results obtained in [6] to invariants of 
an nth-order system n]. Namely, we have shown that the group of all analytic 


